Digital Modelling
LiDAR can be used to create extremely detailed terrain and vegetation models.
This can be applied in planning, resource inventory erosion and biodiversity monitoring and environmental resource management.
LiDAR assists the creation of GIS surfaces of trees and stand attributes and 3D walk through and visualisations.
LiDAR Acquisition
Our expert team arrange the collection of your LIDAR requirements, tailoring the specification to suit the needs for analysis.
This can range from inside or under canopy surveys, to small aerial surveys using our drone-based LiDAR systems, through to millions of hectares across multiple suppliers all being managed to deliver your project on time and to specification.
LiDAR Software Applications
Interpine has developed a large toolbox giving us the ability to carry out a large number of LiDAR analysis workflows. These build on our expertise in LAStools, Quick Terrain Modeler, FUSION, Pix4D, R, Python, ERSI ArcPro and ArcMap Extensions and software tools.
UAV derived structure from motion photogrammetric point cloud analysis.
Predictive Modelling
Development of relationships between LiDAR metrics and tree and stand attributes such as volume and carbon, and building predictive models for stand characteristics.
Implementation of Regression Estimation and Regression Modelling and k-Nearest Neighbour (k-NN)approaches.
Out in Industry
Frequently Asked Questions
What is Plot Imputation and how do you generate Forest Yield Tables
Once the predictor metric relationships are established the reference plots are related (imputed) to represent a grid cell across the target imputation grid. This introduces the concept of nearest neighbours (kNN). In the simplest sense this could be thought of as 1 plot is used to represent each grid cell in the network, that being often referred to k=1 in the terminology of kNN. However we can use more than 1 plot to represent a grid cell (k=2,3,4 etc) as a simple average or provide a respective weighting of each of these plots for each grid cell when k>1.
Then it’s just maths to simply select any “Area of Interest” (typically a stand, harvest area or might be an entire forest!) and the respective target imputation grid cells that fall in the area, to get a final yield table.
Why is LiDAR Data Quality Assurance Important
To increase the success of any LiDAR project we must be sure any anomalies are not present in the dataset. Producing a good quality control report increases the success of LiDAR inventory results.