
Evaluation of the economic impacts of length and
diameter measurement error on mechanical
harvesters and processors operating in pine
stands

Hamish D. Marshall, Glen E. Murphy, and Kevin Boston

Abstract: Value recovery studies from around the world have shown that on average mechanical log-making systems
lose 18% of the potential value compared to 11% for motor manual systems. One of the potential reasons for their
poor value recovery performance is the level of accuracy of their stem diameter and length measurements. Numerous
studies have looked at the level of error in both the diameter and length measurements made by mechanical harvesters
and processors; however, few have looked at the economic impacts of these errors. The paper investigates the economic
impacts in terms of value loss of six different harvesting operations in three different pine species. The accuracy and
precision of the measurements recorded in this study were similar to those of other studies from around the world. A
simulation model was developed to estimate the value loss caused by these errors. The results of the simulation model
showed that the operations were losing between 3% and 23% of the potential value because of measurement errors.
Further analysis showed that the industry should concentrate on increasing the precision of the length and diameter
measurements to optimize gains from reducing the measurement error rates.

Résumé : Des études de récupération de valeur lors du tronçonnage, menées à différents endroits dans le monde, ont
montré que les procédés de récolte mécanisés entraînent en moyenne une perte de 18 % de la valeur potentielle com-
parativement à 11 % pour les procédés motomanuels. Une des raisons potentielles pour expliquer cette faible perfor-
mance est liée au degré de précision des mesures de diamètre et de longueur des tiges. Plusieurs études ont porté sur
l’estimation du degré de précision des mesures de diamètre et de longueur des abatteuses-façonneuses; cependant, peu
d’entre elles en ont évalué les impacts économiques. Cet article examine les impacts économiques en termes de perte
de valeur associés à six opérations de récolte différentes et ce, pour trois espèces de pins différentes. La précision et
l’exactitude des mesures enregistrées dans cette étude sont similaires à celles d’autres études à travers le monde. Un
modèle de simulation a été développé afin d’estimer la perte de valeur occasionnée par ces erreurs. Les résultats du
modèle de simulation indiquent que les opérations de tronçonnage ont entraîné la perte de 3 à 23 % de la valeur poten-
tielle à cause des erreurs de mesure. Des analyses plus approfondies montrent que l’industrie devrait se concentrer sur
l’augmentation de la précision des mesures de diamètre et de longueur pour profiter au maximum de la réduction des
erreurs de mesure.

[Traduit par la Rédaction] Marshall et al. 1673

Introduction

There is a worldwide trend toward mechanization and
computerization in the forestry industry. The drivers for this
trend include productivity and cost improvements (Anony-
mous 1997) and labor-related issues, for example, improving
worker safety (Axelsson 1998) and addressing growing labor
costs.

Modern harvesters and processors are commonly equipped
with merchandising computers that are connected to length
and diameter sensors, which provide a continuous stream of
stem dimensional data to the computer to assist the operator
in making value-driven bucking decisions (Sondell et al. 2002).

Length measurements are commonly done using a mea-
suring wheel (Andersson and Dyson 2002; Gellersedt 2002).
The wheel is kept in contact with the stem by using either a
spring or a hydraulic cylinder (Makkonen 2001). The wheel
is reset either using the action of the cut-off saw or in some
cases using photocells located near the cut-off saw. Some
harvesters and processors do not have a measuring wheel;
instead they use the feed rollers. The diameter of the log is
measured using one or two potentiometers or encoders con-
nected to the feed rollers or delimber arms (Andersson and
Dyson 2002; Makkonen 2001).

As with all measurements, the length and diameter mea-
surements made by the harvesting head sensors will contain
some level of error, either random or systematic. Mistakes or
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gross blunders are not errors and should never be called
such (Barry 1978).

There are a large number of causes for measurement er-
ror; they include vibration and shocks, a lack of instrument
calibration and inappropriate bark thickness functions,
changes in environmental conditions and operating season,
external stem shape, roughness and branchiness, and the skill
level of the observer (Sirohi and Radha Krishna 1991; Mor-
ris 1996; Plamondon 1999; Makkonen 2001; Möller et al.
2002).

There have been few studies that have looked at the impli-
cation of measurement error. Olsen et al. (1989) investigated
the effects of accuracy of length and diameter measurements
on the optimal bucking solution. Their study was carried out
on manual log makers using log tapes for length measure-
ments in second-growth Douglas-fir (Pseudotsuga menziesii
(Mirb.) Franco) forest. Three different methods of measuring
diameter were also used: bucker’s tape, angle gauge, and
calipers. The study found that length errors were not signifi-
cant. Errors in diameter measurement, however, resulted in a
substantial loss in potential value: 5.2% when using a log-
ger’s tape, 2.0% with the angle gauge, and 1.4% with cali-
pers.

There is general agreement in the literature that the length
and diameter measuring accuracy of harvesters will have an
influence on the precision and quality of the bucking opera-
tion (Plamondon 1999; Chiorescu and Grönlund 2001;
Sondell et al. 2002). There is, however, little literature on the
effect of measurement error on either the value recovery of a
harvester or the volume estimates made by a harvester. It has
been estimated that in Norway spruce (Picea abies (L.)
Karst.) that measurement error could cause approximately
1% loss in value (Sondell et al. 2002).

This paper focuses on single-grip harvesters and single-
grip processors, since they are now, or are predicted to be-
come, the dominant type of harvesters and processors used
in many parts of the world (Hakkila et al. 1992; FERIC
1996; Anonymous 1997; Gellerstedt and Dahlin 1999).

The objective of this study was to investigate the eco-
nomic impacts of a range of length and diameter measure-
ment errors. Economic impacts are looked at from a
landowner’s perspective; the analyses use the log as the eco-
nomic unit.

Materials and methods

Error distributions, stem databases, and log-grade specifi-

cations described in detail by Marshall (2005) were used to
determine the economic impacts, in terms of value loss, of
length and diameter measurement error. An optimal bucking
and error simulation model was developed to help to deter-
mine these economic impacts. Brief descriptions of the dis-
tributions, databases, log specifications, and the simulation
model are provided next.

Error distributions, stem databases, and log-grade
specifications

Table 1 gives a description of the equipment, sites, and
operator experience that were studied to obtain error distri-
butions. All six studies were carried out in pine stands be-
tween July 2002 and July 2004. Three were carried out in
Georgia and Alabama and were done as part of an M.Sc.
thesis by Conradie (2003). One was carried out with the help
of Scion Research in New Zealand. The other two were car-
ried out in eastern Oregon. The equipment was studied “as
is”, that is, the machine operators were not specifically asked
to recalibrate their equipment prior to the studies, although
at least one of the machines had recently been checked by
the equipment dealer.

Table 2 shows the error statistics from each of the six
studies that were used to determine economic impacts. The
errors were obtained by subtracting the actual log measure-
ments from those shown by the mechanized harvester dis-
play. Actual length measurements were collected using a
logger’s tape, and actual diameter measurements were col-
lected with calipers.

Three stem databases were developed by taking accurate
measurements of trees that had been felled. Measurements
included diameters, lengths, stem curvature, location of
changes in knot size, and the presence and severity of de-
fects. A summary of the three stem databases is given in Ta-
ble 3.

Table 4 summarizes the log-grade specifications used.
They were obtained from the forest owners of the stands
from which the stems in the databases were collected. The
full specifications included characteristics such as minimum
and maximum log length and small- and large-end diame-
ters, minimum acceptable quality features (e.g., maximum
branch size), and maximum allowable sweep. The end uses
of the different log grades were unknown; however, from the
specifications many of them were clearly destined for saw-
mills, with the low-value grades probably being supplied to
pulp mills. Supplying logs that meet the specifications is ex-
tremely important; whole truck loads can be rejected by

Study Carrier, head
Merchandising
computer Site location Species* Operation type†

A Valmet T500, s52 Valmet Maxi Eastern Oregon PP CTL thinning
B Valmet T520, s52 Valmet Maxi Eastern Oregon PP CTL thinning
C Ponsse Ergo, H73 Ponsse Opti Alabama LP CTL thinning
D Ponsse Ergo, H73 Ponsse Opti Georgia LP CTL thinning
E Ponsse Ergo, H73 Ponsse Opti Alabama LP CTL thinning
F Cat 330CL, Waratah HTH 626 Logrite New Zealand RP POL clear-felling

*PP, Pinus ponderosa Dougl. ex P. & C. Laws.; LP, Pinus taeda L.; RP, Pinus radiata D. Don.
†CTL, cut to length; POL, processed on landing as full trees.

Table 1. Summary of equipment and study sites used to develop length and diameter error distributions.



mills if the logs do not meet the mill’s specifications. The
number of log grades and specifications used differed
greatly between the species (ponderosa pine (Pinus ponder-
osa Dougl. ex P. & C. Laws.); loblolly pine (Pinus taeda
L.); radiata pine (Pinus radiata D. Don)). The relative prices
were developed in consultation with the forest owners and
took into account not only the market price, but also the
market demand. Price lists for studies A, B, and F were de-
veloped in a consistent way. Price lists for studies C, D, and
E were independently prepared in a consistent way by
Conradie (2003), but under the guidance of the second au-
thor of this paper.

Description of the optimal bucking and error
simulation model

To determine the economic impacts of diameter and
length measurement errors, an error simulation model with
an imbedded optimal bucking algorithm was developed. The
model simulated the processes that a harvester goes through
in the bucking of a stem. The model assumed that the har-
vester was operating an optimal bucking system and that
each stem was completely scanned before the stem entered
the optimization process. Although the authors have observed
some operations where the stem is completely delimbed and
scanned before bucking the stem into logs, most modern
harvesters do not completely scan the stem (Uusitalo and
Kivinen 2001; Sondell et al. 2002); many, such as the
Ponsse harvesters (Ponsse 2002), have a taper equation pre-
diction system so a near optimal solution can be generated
without scanning the full stem. However, studies have shown
that for a number of species it is more economic to do a
complete prescan than to use the partial scan and forecast
technique (Murphy 2003; Marshall and Murphy 2004). The
decision to completely scan the stem before bucking was
made so the effects of the errors could be determined inde-
pendently of any stem forecasting system.

The model assumed that the following bucking process
was completed by the harvester for each stem. The stem was
lifted and scanned for dimensions, quality, and form. This
information was used by an optimal bucking algorithm to
create an optimal bucking pattern for the stem. The harvest-
ing head then moved along the stem, measuring the length
and stopping at the location where optimal cuts were to be
made. The model simulated a completely automated scan-
ning and bucking operation with no human input. The simu-
lation model was designed to simulate measurement errors
that occur not only during the initial scanning phase, but
also when the actual logs were being cut. In the cutting
phase, only length errors were applied, as it was assumed
that the machine uses the log lengths to cut the stem up into
logs. The initial length, diameter, and the log length errors
could be applied independently of each other or used to-
gether.

Figure 1 is an overview of the whole optimal bucking and
simulation model. The simulation model takes the stem de-
scription stored in the stem database and develops a “stem
piece”. A “stem piece” is a model of a stem, in which the
stem is broken into stages of a set length (0.1 m). For each
stage, the large- and small-end underbark diameters are cal-
culated as well as the quality and sweep code, the number of
defects, and the stem volume of that stage. The model ran-
domly generates length and diameter errors from user-
supplied error distributions and applies them to each stage of
the selected stem piece.

Applying the length error
When a length error is applied, it is applied randomly to

every stage in the “stem piece”. The model attempts to
mimic how a harvester on-board computer and measuring
system would measure a stem. For example if a harvester
measuring system was undermeasuring every 0.1 m stage by
0.02 m, then the harvester on-board computer would make
diameter, quality, and sweep measurements at 0.08 m inter-
vals while still recording the stage length as 0.1 m. Conse-
quently, a stem that should have had only 300 stages of
0.1 m each would have 375 stages on average, and to the
computer’s knowledge the stem will be 37.5 m long rather
than being only 30 m. The length errors were collected for
full log lengths; therefore, the mean and standard deviation
of the length error distribution were adjusted using the fol-
lowing formulas (adapted from Freese 1967) so that they
could be applied to each stage. The assumed average log
length used in these equations was 4 m.
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Length error (m) Diameter error (cm)

Study No. of observations Mean SD No. of observations Mean SD

A 116 –0.01 0.39 81 –0.65 1.54
B 108 0.04 0.23 77 –0.46 2.40
C 217 0.03 0.10 217 –0.40 0.81
D 143 –0.02 0.11 143 –0.02 1.06
E 250 –0.03 0.23 257 –0.31 1.87
F 902 0.01 0.25 1413 0.60 3.60

Note: SD, standard deviation.

Table 2. Univariate statistics for length and diameter errors distribution.

Stem
database Species

Avg. stem
length (m)

Avg. stem
size (m3)

No. of
trees

PP Ponderosa pine 13.3 0.39 100
LP Loblolly pine 21.1 0.61 60
RP Radiata pine 29.0 2.34 107

Table 3. Summaries of the stem databases obtained from mea-
surements of felled pine trees in Alabama, Oregon, and New
Zealand.
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The simulation model, for a given “stem piece”, creates
enough randomly generated stage lengths (i.e., 0.1 + ε,
where ε = N(µ, σ2)) so that their cumulative total is equal to
the total length of the original stem. The polar method, as
described by Law and Kelton (1991), was used to generate

random numbers from a normal distribution with a mean of
µ and variance of σ2 based on the data collected for each
machine. A new “stem piece” was then created with enough
elements to account for the error-adjusted length. The next
step was to recalculate each stages’ small- and large-end di-
ameter, quality and sweep code, and volume from the origi-
nal stem database data using the stage lengths (0.1 + ε).

Figure 2 gives a simplified example of how the addition
of errors affects the stem description used by the optimal
bucking computer. It shows only the first four diameter and
quality measurements that have been made on the stem.

In this example, the measurements made to describe the
stem are supposed to be made at 0.1 m intervals (stage
length). The first stem (A) is the true stem as it would ap-
pear if the machine were making perfectly accurate measure-
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Log
specification Stem database

No. of log
grades

Length range
(m)

Relative price
range ($/m3)

PP Ponderosa pine 7 2.4–6.7 4.00–62.00
LP Loblolly pine 4 3.0–6.1 2.50–35.00
RP Radiata pine 20 1.0–12.1 31.20–153.40

Table 4. A brief description of the log specifications used with each stem database.

Fig. 1. Overview of the optimal bucking and error simulation model.



ments. The second stem (B) is the actual measurements that
are made assuming that the system is undermeasuring the
stage length. The last stem (C) is the stem description that
would be used by the optimal bucking algorithm. Stem A
and stem C are quite different in terms of the stage large-
and small-end diameters and quality code. The quality and
sweep codes change because the quality or sweep code ap-
plied to a stem is the lowest code that exists in the length of
the stem that the stage covers. Due to the changes in the
large- and small-end diamaters, the stage volume will also
change. These changes will have an effect on the optimal
bucking solution produced.

Applying the diameter error
Once the length error has been added to the stem descrip-

tion the diameter error can be added (Fig. 3). This is done by
adding or subtracting a randomly generated diameter error
term. The diameter errors were generated in the same man-
ner as the length errors but from a different normal distribu-
tion. If the error-adjusted diameter is less than zero, that is,
it has a negative diameter, then the diameter of that stage is
changed so that it is zero. Once the diameters are adjusted
for error the stage volumes are recalculated.

Optimal bucking solution generation
The two “stem pieces”, true and error adjusted, are then

optimally bucked with the BUCKIT optimal algorithm.
BUCKIT uses a similar dynamic programming algorithm to
that found in AVIS (Geerts and Twaddle 1984) and was de-
veloped by the senior author.

Processing the stem using the bucking solution
The next step in the stem processing simulation after the

optimal solution has been generated is to cut the logs as
specified in the optimal solution. This requires the processor
to measure the length of each log, starting most probably at
the large end of the stem and making cuts at the appropriate
lengths. The model can also apply a length error to this part
of the simulation. It does this by taking the log lengths from
the optimal bucking solution and adding a randomly gener-
ated length error.

Calculating value loss
The true value of the logs cut from each stem must be de-

termined to calculate the value loss associated with any me-
chanical processor measurement errors. In a real operation,
logs that do not meet specification, after being scaled at ei-
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Fig. 2. An example of how length measurement error is applied to a stem. led, large-end diameter; sed, small-end diameter.



ther the logging site or mill, will either have to be cut
shorter to meet the desired specification or be downgraded
to a lower value product.

To mimic this quality-control procedure, each log cut by
the bucking simulation model was checked against the true
stem measurements. If it was found that the log would not
meet its intended specifications, it would either be shortened
or downgraded to the next highest value log product. The
volume and value of the recut or newly allocated log product
would then be recalculated. The total value of the stem
would then be reduced to reflect this change.

Many companies have a tolerance of ±5 cm around their
length measurements and ±1 cm tolerance around the small-
and large-end diameter measurements. The simulation model
has a ±5 cm tolerance for logs being out of specification for
length, but a zero tolerance for diameter measurements. Al-
lowing a nonzero diameter tolerance on the small- and large-
end diameter measurements would have generated total stem
values that were greater than those obtained from the opti-
mal solution based on error-free diameter measurements.

The simulation model was run on the stem databases
listed in Table 3 with
(1) The error distributions measured in the field to deter-

mine the value loss associated with each operation.
Analysis of variance was used to determine the level to
which the length, diameter, and bucking errors inter-
acted with each other. The experiment was designed as a
2 × 2 × 2 factorial experiment, where the experimental
unit was a tree and the response variable was the aver-
age value recovery from the 10 simulations.

(2) The simulation model was also run on a range of error
distributions with different mean error rates and stan-
dard deviations. The results from these simulations were
used to produce production surfaces of value recovery.
The error distributions collected in the field from the
harvesters were used to give guidance in determining
the range of the error distribution that needed to be sim-
ulated. Table 5 lists the ranges of simulated error distri-
butions.

Owing to the stochastic nature of this model, a pilot study
was carried out and the simple sample number formula (n =
t2s2/e2) was used to calculate the number of replicates
required for a 95% confidence level and a 10% margin of er-
ror. It was calculated that 10 replicates would be required for
this confidence level and margin of error.

For each of the six studies the simulation model was run
10 times with eight different combinations of the three error
types: length measuring error (L) at the time of scanning the
stem, diameter measuring error (D) at the time of scanning
the stem, and length measuring error at the time of bucking
(B) the stem into logs. The total value of the logs from the
stems contained in each of the databases was added up and
averaged over the 10 simulations. For each error simulation
type the total value was divided by the optimal value to give
a percent value of recovery.

Results

Figures 4, 5, and 6 show the results of the simulations us-
ing the error distributions given in Table 2. The studies were
subdivided into different graphs by species. The asterisk at
the top of the bars indicates that the effect is significant at a
95% confidence level.

Of the three measurement errors, diameter and bucking er-
rors result in the biggest value losses. Value loss due to di-
ameter error is relatively easy to understand; it is greatest
when the diameter is under measured, as in studies A–E.
Only in study F was the value loss from length error during
the stem scanning greater than the loss due to diameter error.

More difficult to understand is the large value loss due to
bucking length (B) error, especially when compared to the
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Means SD

Length stage error (m) –0.002 to 0.002 0 to 0.09
Diameter error (cm) –1.2 to 1.2 0 to 6
Bucking error (m) –0.08 to 0.08 0 to 0.6

Note: SD, standard deviation.

Table 5. Range of error distributions simulated.

Fig. 3. An example of how diameter measurement error is applied to a stem. led, large-end diameter; sed, small-end diameter.
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value loss due to scanning length measurement (L) error,
given that the same error distributions were used in both sets
of simulations. For example, in study F (radiata pine), the
value loss due to length measurement errors (L) during log
scanning was 5% compared to 13% from length measure-
ment errors (B) during the bucking process. The easiest way
to explain this is to use a simplified example, as illustrated
in Tables 6–8. This example has three log types: pruned
sawlogs, which have to be 5 m long with a minimum small-
end diameter of 25 cm; unpruned sawlogs, which have an al-
lowable length range of 3.5–4.5 m in 0.1 m steps with a
minimum small-end diameter of 15 cm; and pulplogs, which

have a minimum length of 1 m and a minimum small-end
diameter of 5 cm.

Tables 6–8 are laid out in the same format. The second
column in the tables gives the scanning length error, the
third column is the solution produced by the dynamic pro-
gramming bucking algorithm. The next two columns give
the bucking length error and the cumulative length at which
the cuts are to be made along the stem. The final column
gives the actual feasible logs produced; in some cases these
logs have to be rebucked to meet the log specifications.

The solution, without any measurement errors added, is
given in Table 6. The pruned log is limited by its length and

Fig. 4. Simulated value recovery based on errors found in studies A and B in ponderosa pine.

Fig. 5. Simulated value recovery based on the errors found in studies C, D, and E in loblolly pine.



the sawlog is constrained by its minimum small-end diame-
ter restriction. The optimal value for this stem is $93.68 (all
monetary values are in US dollars).

Table 7 gives the solutions for when a positive length er-
ror, a bucking error, or combination of both errors are added
to the stage length. When a positive error is added to the
stage length during the scanning of the stem, the 15 cm
small-end diameter restriction is reached in fewer stages
than in the error free solution. This means that the sawlog
was cut 0.1 m shorter than in the optimal solution and so re-
duced the value of the stem by $0.03. However, when the
same effective error is added as a length bucking error,
meaning that every log cut will be 0.1 m longer than in the
optimal solution, the value of the stem drops by $0.90. This
is due to overcutting the length of the pruned log at 5.1 m,
which in turn causes a sawlog’s small-end diameter to be
less than the minimum small-end diameter constraint.
Rebucking of these logs produced 0.3 m of waste. When
both errors were added the value dropped less than when
just the bucking errors were added alone. This is due to the
errors having a compensating effect on each other.

The results (Table 8) of the negative errors being added
are quite different from those of the positive error results.
When the negative stage length errors are added, there is no
drop in value from the optimal solution, as the exact same
logs are cut. However, when the negative bucking error is
added, the value drops by over $20. This is caused by the 5
m pruned log being cut 0.1 m short, meaning that it needed
to be downgraded to a 4.5 m sawlog. When both negative er-
rors are added the errors do not have the same compensating
effect found for the positive errors.

Downgrading of value, in terms of percentage of logs not
meeting specification, can be found in Table 9. The major
reason for downgrading depends on the type of errors that
are applied. In the case when all error types are applied (as
in Table 9), logs not meeting the length specifications are
the main cause for downgrading logs.

Validation of the model
Validation is the process of testing a model to see that it is

a valid representation of reality. The validity can often be as-
sumed if the model is able to accurately mimic reality
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Fig. 6. Simulated value recovery based on the errors found in study F in radiata pine.

Scanning
→

Solve dynamic programming
algorithm → Cutting logs → Regrading to feasible solution

Optimal solution from the bucker Regrade solution of actual logs

Scenario

Length
error per
stage (L) Product

Length
(stages)

Length
(m)

SED
(cm)

Bucking
error per
log (B) (m)

Actual cuts
made (no.
of stages) Product

Length
(stages)

Length
(m)

SED
(cm)

Value
($)

Optimal +0.00 Pruned 50 5.0 33 +0.00 50 Pruned 50 5.0 33 78.55
Sawlog 40 4.0 15 90 Sawlog 40 4.0 15 14.21
Pulp 20 2.0 6 110 Pulp 20 2.0 6 0.92

Total 110 11 93.68

Note: SED, small-end diameter.

Table 6. The optimal bucking scenario of a simple stem without any errors being added.
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Scanning → Solve dynamic programming algorithm → Cutting logs → Regrading to feasible solution

Optimal solution from the bucker Regrade solution of Actual Logs

Length error per
stage (L) (m) Product

Length
(stages)

Length
(m)

SED
(cm)

Bucking
error per
log (B) (m)

Actual cuts
made (no.
of stages) Product

Length
(stages)

Length
(m)

SED
(cm)

Value
($)

Scenario L
+0.002 Pruned 50 5.1 32.95 +0.00 50 Pruned 50 5.0 33 78.55

Sawlog 39 4.0 15.37 89 Sawlog 39 3.9 15.45 14.10
Pulp 21 2.1 6 110 Pulp 2.1 2.1 6 1.00

Total 91.1 11 93.65

Scenario B
+0.00 Pruned 50 5.0 33 +0.1 51 Pruned 50 5.0 33 78.55

Sawlog 40 4.0 15 92 Waste 1 0.1 32.5 0.00
Pulp 20 2.0 6 110 Sawlog 39 3.9 15 13.58

Waste 2 0.2 14.1 0.00
Pulp 18 1.8 6 0.75
Total 110 11 92.88

Scenario LB
+0.002 Pruned 50 5.1 32.95 +0.1 51 Pruned 50 5.0 33 78.55

Sawlog 39 4.0 15.37 90 Waste 1 0.1 32.55 0
Pulp 21 2.1 6 110 Sawlog 39 3.9 15 13.58

Waste 1 0.1 14.55 0
Pulp 19 1.9 6 0.83
Total 110 11 92.96

Note: SED, small-end diameter.

Table 7. The optimal bucking of a simple stem with positive length (L) and bucking (B) errors added.

Scanning → Solve dynamic programming algorithm → Cutting logs → Regrading to feasible solution

Optimal solution from the bucker Regrade solution of actual logs

Length error
per stage (L)
(m) Product

Length
(stages)

Length
(m)

SED
(cm)

Bucking
error per
log (B) (m)

Actual
cuts made
(stages) Product

Length
(stages)

Length
(m)

SED
(cm)

Value
($)

Scenario L
–0.002 Pruned 50 4.9 33.04 +0.00 50 Pruned 50 5.0 33 78.55

Sawlog 40 3.9 15.08 40 Sawlog 40 4.0 15 14.21
Pulp 21 2.1 6 110 Pulp 20 2.0 6 0.92

Total 110 11.0 93.68

Scenario B
+0.00 Pruned 50 5.0 33 –0.1 49 Sawlog 45 4.5 35.25 55.48

Sawlog 40 4.0 15 Waste 4 0.4 33.45 0.00
Pulp 20 2.0 6 88 Sawlog 39 3.9 15.9 14.58

107 Pulp 19 1.9 7.35 1.05
110 Waste 3 0.3 6 0.00

Total 110 11 71.11

Scenario LB
–0.002 Pruned 50 4.9 33.04 –0.1 49 Sawlog 45 4.5 35.25 78.55

Sawlog 40 3.9 15.08 Waste 4 0.4 33.45 0.00
Pulp 21 2.1 6 89 Sawlog 39 3.9 15.9 13.58

110 Pulp 19 1.9 6.9 0.83
Waste 3 0.3
Total 110 11.0 6 92.96

Note: SED, small-end diameter.

Table 8. The optimal bucking of a simple stem with negative length (L) and bucking (B) errors added.



(Daellenbach 1995). The best way to validate a model is to
compare the model’s results against the actual results from
the same situation. Both sets of results should be obtained
independently of each other.

Two of the studies (C and F) have actual value recovery
percentages determined from real value recovery studies that
were used to validate the model. One important difference
between the actual value recovery values and the simulated
ones was that the simulated results assumed that each stem
was fully measured before the solution was determined. This
was not the case for the actual machines; when the operator
was processing the stem the cutting solution was generated
as the stem was measured. Comparing the actual value re-
covery with that determined by the simulations gives an in-
dication of how well the model is modeling reality. For
study C, both the actual and simulated value recoveries were
90% (Conradie 2003) when all errors were simulated. For
study F, the simulated value recovery was 86% compared to
79% for the actual value recovery study (Murphy et al.
2005). These results indicate that the simulation model is
reasonably accurate although, given that the model is simu-
lating neither the losses due to quality and sweep measure-
ment errors nor those due to lack of use of optimization
software, the differences between measured and simulated
operations are much lower than would be expected. It is pos-
tulated that this could be due to an overestimate of the error
distribution used in the simulation and that experienced ma-
chine operators are able to make adjustments to the cutting
pattern that reduce the effects of the measurement error. The
model could not simulate adjustments by experienced opera-
tors.

It could be expected that the difference between actual
and simulated recovery in study C would be less than that in
study F, as study C had much simpler tree quality descrip-
tions and cutting patterns than study F. The machine in study
C also used computer-assisted bucking. These features of
study C would mean that there would be no value losses as-
sociated with quality errors, sweep measurement errors, and
lack of computer-assisted bucking; hence the “total value
loss” would equal the value loss caused by length and diam-
eter measurement errors.

The results from the analysis of variance showed that the
value losses from the measurement error are not additive.
The three-factor factorial design tested the following linear
model, which included both the main effects (L, D, and B)
and interaction effects (LD, DB, LB, and LDB):

[4] Value loss (measurement error) = L + D + B

+ LD + LB + DB + LDB + ε

The asterisk above the bar in Figs. 4, 5, and 6 show that
there is not one model to describe value loss due to measure-
ment error for all the studies. The results also show that the
three types of error do interact, many times producing a
value loss much less than would be expected from a simple
additive model. In some cases the interaction between two of
the error types gives a value loss that is less than one of the
individual error types.

Response surfaces for different levels of error
Figure 7 contains a series of graphs that show the effects

of different levels of accuracy and precision of length and
diameter measurements on percentage value recovery. The
results show that increasing the precision is of greater im-
portance than increasing accuracy for the distributions that
were simulated. The simulation results also indicate that
overmeasuring either length or diameter produces lower
value losses than undermeasuring length alone. This is sim-
ply because overmeasured logs can generally be rebucked
without having to be downgraded to a lower value product.
Undermeasured logs, however, often have to be rebucked
and downgraded, meaning that significant value is some-
times lost. The interesting dip in results for the zero standard
deviation in the radiata pine length and bucking simulations
is due to rounding the bucking error, up and down to the
nearest stage. This effect is particularly apparent in the
radiata pine study, as a number of the grades had only one
allowable length.

The effects on the response surfaces of relative price dif-
ferences between log grades were not evaluated in this study
but deserve future research efforts.

Discussion

The average value loss for the six studies when all three
error types (L, D, B) were applied was 18%, which is simi-
lar to the average value loss of 21% from value recovery
studies on mechanical harvesters from around the world
(Murphy 2003). Given that many harvesters and processors
do not fully measure the stem before bucking, a more realis-
tic comparison is with the average value loss when only the
length and diameter errors (L, D) are included; this value
loss is 7%. The difference between 21% and 7% could easily
be attributed to incorrectly assessing sweep and quality and
the lack of optimization systems.

In the five studies where the diameters were on average
being underestimated, the losses due to diameter error were
much greater than those due to length measurement error
during stem scanning. This is consistent with a study by
Cossens (1991) on a Hahn harvester in New Zealand, where
he reported that conservative diameter measurements were
the main cause for the 9.7% value loss, given that 83% of
the length measurements were within a 5 cm tolerance. This
is also consistent with the work of Chiorescu and Gronlund
(2001), who looked at the effect of stem length and diameter
measurement accuracy of mechanical harvesters on the value
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Study
Length
(%)

Diameter
(%)

Quality
(%)

Any combination of
length, diameter, and
quality (%)

A 16 12 0 21
B 12 12 0 21
C 42 18 0 4
D 37 3 0 7
E 39 14 0 14
F 26 6 1 29

Table 9. Sources of value downgrading for all log grades (per-
centage of total number of logs cut).



obtained from optimal bucking, sawing, cross-cutting, and
board-grading procedures at the saw mill. They found that
the harvester’s performances on measuring length and diam-
eter are both important, with the accuracy of the diameter
measurement being of greater importance.

The most surprising result from the simulation in this re-
port, which has not been reported in any of the other studies
on harvester measurement accuracy, was the large value loss
that occurs when a length measurement error was applied at
the time of bucking. Length measurement errors during the

bucking process had a significant effect on value recovery in
all six studies. In study F, over 20% of the value was lost,
which is significantly greater than the 1% value loss that
Sondell et al. (2002) estimated in Norway spruce. This may
be because a partial scan system is most often used. In the
Sondell et al. (2002) study, all the machines were getting a
minimum of 69% of the logs within 5 cm of the correct
length, which equates to a standard deviation for length error
of 0.05 m. The diameter accuracy for their study was mea-
sured in percentage of trees within 4 mm. The worst-
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Fig. 7. The effects of different levels of accuracy and precision of length and diameter measurements on percent value of recovery.



performing machine after calibration achieved a diameter
accuracy of 62.2%, which means that the maximum standard
deviation for diameter error was around 4.5 mm. The level
of accuracy reported in the Sondell et al. (2002) study was
considerably higher than that found for the machines studied
in this paper.

Although not simulated in this study, mismeasured logs
can have a significant impact on the revenue obtained by
lumber producers or other solid wood processors. Andersson
and Dyson (2002) calculated that, when a harvester was
manufacturing 20% of its logs below the minimum length
specification, a 2.5% reduction in lumber yield and a 1.5%
drop in mill productivity would follow. Another study, using
a sawing simulator, showed that measurement error distribu-
tions with standard deviations for diameter and length of 6
mm and 4 cm, respectively, could produce between 18% and
37% of boards that were off-grade (Chiorescu and Gronlund
2001).

All measurement systems are likely to be subject to mea-
surement error. The diameter and length measurements made
by harvesters are made under very difficult mechanical and
environmental conditions. One of the easiest ways of reduc-
ing measurement error is to have a regular checking, calibra-
tion, and maintenance program. A good calibration program
such as suggested by Makkonen (2001) should eliminate
much of the bias in the error distributions. A number of the
new harvesting heads now come with calipers to calibrate
the harvesters’ measurement system.

One procedure that is sometimes used for reducing the
cost of length measurement errors is to deliberately buck
over length to avoid missing trim allowances. However,
while bucking under length can result in high value losses,
deliberately bucking over length will also lead to value
losses (Fig. 7). The problem is that log lengths are usually
rounded down to the nearest log length specified in the log
grades. The buyer will only pay based on that rounded-down
volume. There is also always the potential that by cutting
logs longer than the specification requires, a potential log at
the top of the tree will be lost.

Training and communication are extremely important
tools in reducing error. Operators need to understand the
measuring system they are using and how important accurate
log measurements are to the profitability of an operation. As
Andersson and Dyson (2002) suggest, log specifications
must be clearly understood by operators, machine owners,
and company staff.

The current measuring sensors for measuring stem length
and diameter on most harvesting heads are relatively simple.
Large increases in accuracy and precision can be achieved
by redesigning the measuring equipment. Two New Zealand
studies carried out 12 months apart showed that by redesign-
ing the length measuring systems the percentage of logs
within 5 cm of the target length rose on average by over
10% (Evanson and McConchie 1996). There have been a
number of attempts at using more advanced sensing technol-
ogies such as laser and digital cameras. In the mid-1990s a
Swedish project investigated the development of a touch-free
measurement system for diameter. They estimated that the
new system could produce 90% of all logs within a 4 mm
range and lead to potential increases in revenue between
US$5000 and US$85 000 per single-grip harvester per year.

The estimated purchase cost of the fully developed system
was estimated to be about US$20 000 (Löfgren and
Wilhelmsson 1998).

In some high-value stands the “high-tech” solution may
not be the best option. In some stands, manual log making
may be the most profitable option, as manual log making
has been found to be more accurate on length and diameter
measurements than mechanical harvesting systems (Cossens
1989). In low-value stands with simple cutting patterns,
maintaining good maintenance and calibration systems may
be all that could be justified.

Conclusions

The trend towards mechanical harvesting of the world’s
production harvest has been driven by desires to improve
productivity and costs or to resolve labor-related issues, for
example, worker safety or labor shortages. With mechaniza-
tion comes the use of state-of-the-art communication and
measurement technologies and powerful on-board comput-
ers, giving this system the potential to increase value recov-
ery at the time of bucking.

Like all measuring systems, these are subject to measure-
ment errors. The simulation model described in this paper
showed that the cost of measurement errors, in terms of the
percent value of loss, for these six harvesters could be sig-
nificant, ranging from 3% to 23% depending on the type of
error, the level of error, and the species. It was found that
value loss seemed to increase more rapidly with decreasing
precision compared to decreasing accuracy. Based on the
losses reported in this paper, operators, machine owners, for-
est owners, and researchers need to investigate different
methods of reducing the level of error in stem length and di-
ameter measurements. There are a number of different meth-
ods available to the industry, both procedural and
technological. Choosing which method best suits a particular
operation, however, requires a detailed knowledge of the
causes and implications of the errors. The amount of invest-
ment that can be made in any particular method depends not
only on the error rate of the machine, but also on the value
of the forest in which the machine is working.
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